In the News

  • Dr. Christina Back Testifies in Support of Advanced Nuclear Energy

    Dr. Christina Back, General Atomics’ vice president for Nuclear Technologies and Materials, testified Sept. 13 before the Senate Committee on Environment and Public Works about the benefits of advanced nuclear technology, specifically accident tolerant fuel (ATF) for commercial nuclear reactors. Back discussed the need to efficiently review and license ATF concepts, such as the one GA is developing with Westinghouse that uses an innovative silicon-carbide cladding to help make reactors even safer and more economically competitive.

    The testimony can be viewed here.

    Dr. Christina Back Testifies in Support of Advanced Nuclear Energy
    Dr. Christina Back, right, shows an innovative silicon-carbide cladding for Accident Tolerant Fuel to members of the Senate Committee on Environment and Public Works during her recent testimony.
  • Steady as she goes: Scientists tame damaging plasma instabilities and pave the way for efficient fusion on Earth

    Before scientists can capture and recreate the fusion process that powers the sun and stars to produce virtually limitless energy on Earth, they must first learn to control the hot plasma gas that fuels fusion reactions. In a set of recent experiments at the DIII-D National Fusion Facility, operated by General Atomics for the DOE, scientists have tamed a plasma instability in a way that could lead to the efficient and steady state operation of ITER, the international experiment under construction in France to demonstrate the feasibility of fusion power.

  • Portable Nuclear Power Reactor Program Advances at GA

    Naysayers are nothing new for General Atomics. While others say nuclear power is on the decline, the privately held company is betting on a vision of small reactors cooled by helium gas. It’s a long-term vision since GA’s reactor design is not ready for commercial use. In fact, a basic component of the reactor — uranium fuel rods made from a novel ceramic material rather than conventional materials — needs to be proven in the lab and cleared by federal regulators. That process will take several years.

  • General Atomics receives $6.9M in funding awards for nuclear fusion research

    Four researchers from San Diego-based General Atomics have received awards totaling $6.9 million from the U.S. Department of Energy to continue their work on harnessing the vast potential of nuclear fusion as a source of energy. In addition, DOE granted $7.8 million to eight researchers across the country to come to General Atomics to perform research at the DIII-D National Fusion Facility that houses what is called a “tokamak” — a doughnut-shaped fusion reactor that is crucial in the pursuit of making nuclear fusion work on a practical level. General Atomics operates the largest tokamak in the nation for the DOE.

  • Cristina Rea: Taming fusion with machine learning

    Postdoctoral associate Cristina Rea at MIT’s Plasma Science and Fusion Center (PSFC) is exploring ways to predict disruptions in the turbulent plasma that fuels fusion tokamaks. Tokamaks use magnetic fields to contain hot plasma in a donut-shaped vacuum chamber long enough for fusion to occur. Chaotic and unpredictable, the plasma resists confinement, and disrupts. Timely predictions about incipient plasma disruptions could help sustain fusion energy production in these devices, while preventing damage to the machine. To tackle the issue, Rea is part of the PSFC’s collaboration with the DIII-D tokamak in San Diego, which, since the Center’s Alcator C-Mod device ended its run in September 2016, is the only fusion grade tokamak in the U.S. that is currently running.

RSS Feed