In the News

  • A Trojan Horse for Fusion Disruptions

    A plasma disruption can damage tokamak walls and other structures. Mitigating disruptions means injecting impurities into the plasma. The impurities radiate the plasma energy evenly around the tokamak as light. But how do you add impurities deeply into something so hot? A team at the DIII-D National Fusion Facility, operated by General Atomics, devised a way to inject impurities deep into the plasma using thin-walled diamond shells that carry a payload of boron dust.

  • Nuclear Fusion Program at General Atomics Resumes Experiments

    After shutting down for 11 months for upgrades, an ambitious U.S. Department of Energy nuclear fusion program is about to resume conducting experiments at San Diego’s General Atomics. The DIII-D National Fusion Program looks to further developments in the decades-long quest to harness the vast potential of nuclear fusion for practical purposes, such as generating electricity at power plants.

  • DIII-D National Fusion Program Completes Year-Long Facility Upgrade

    The new technologies installed during the 11-month upgrade will play a key role in developing the scientific basis for fusion as a reliable and nearly limitless energy source. When experiments restart in early June, researchers will converge on San Diego to use these tools to optimize the performance of fusion plasmas and help bring practical fusion energy closer to realization.

  • Meet the Director: David Hill, DIII-D

    To eight-year-old David Hill, the UFO-like top and spindly legs of the Space Needle looked like the future. Outside his suburban Seattle home, he'd climb trees to watch workers as they built the Space Needle in preparation for the 1962 World's Fair. When he saw the Needle finally completed, he felt like he was experiencing "tomorrow" right in the present day.

  • GA Researcher Chosen for NIF Discovery Science Experiment

    The next round of Discovery Science Program experiments at Lawrence Livermore National Laboratory’s National Ignition Facility (NIF) will further explore plasma astrophysics, hydrodynamics, nuclear physics, equation of state, material science, and particle acceleration. One key effort will be examining Magnetized Rayleigh-Taylor morphology, under principal investigator Mario Manuel, a scientist with San Diego’s General Atomics. This will be the first Discovery Science experiment to use external magnetic field capabilities developed on NIF for magnetic laser inertial fusion and Discovery Science.

  • Optimizing Key Plasma Physics Code for Latest-Gen Nvidia GPUs Yields Threefold Increase in Processing Speed

    Experts at General Atomics have achieved a major improvement in processing speed for an important plasma physics code by working with experts from Nvidia to optimize it for operation on the latest GPU-based supercomputers. This three-fold increase in processing time for the latest CGYRO code, used to simulate turbulent behavior of confined plasmas, was made possible by acquiring hardware similar to that used in the Summit supercomputer now being developed at Oak Ridge National Laboratory. Working on the system allowed GA researchers to test and validate their approach before deployment – an approach that could prove valuable for researchers in a variety of fields preparing for work on the next wave of supercomputing.

  • How the Navy Prepared Me to Become a Leader in the Nuclear Industry

    General Atomics Director of Business Development for the Energy Group Zabrina Johal talks about how her service as a nuclear-trained officer in the U.S. Navy prepared her for a career in the nuclear industry and helping GA innovate in advanced nuclear.

  • Taming plasmas: Improving fusion using microwaves

    An international team at the DIII-D National Fusion Facility has developed a new way to suppress damaging waves in fusion plasmas using microwaves. The researchers believe the results can lead to the development of approaches to control or reduce the presence of waves in the magnetic fields and could help chart a path to more efficient fusion energy.

RSS Feed